

SCHOOL OF ENGINEERING AND TECHNOLOGY

Outcome Based Curriculum Framework with

CBCS

for

BACHELOR OF TECHNOLOGY

(B. Tech Mechanical Engineering with Specialization in Robotics and Automation)

Students admitted from 2025 -26 onwards

VISION

* To create and nurture a multidisciplinary global university with highest academics, research and ethical standards in a creative and innovative environment.

MISSION

* To be a premier University of choice for all stakeholders and contribute for academic demographic dividend. To inculcate quality, integrity, team work, compassion, ethics in new generation students for catering to various needs of society.

QUALITY OBJECTIVES

- To disseminate knowledge with skills through teaching, training, seminars, workshops, conferences and symposia in Engineering and Technology, Art and Design, Management and Commerce, Allied Health Sciences, Physical and Life Sciences, Arts, Humanities and Social Sciences, Law and Agricultural Sciences to enable students to meet the current needs and trends of industries, business and society.
- To provide technical and scientific solutions to real time problems posed by industries, business and society in all Schools of Joy University.
- To inculcate quality, integrity, team work, compassion, ethics in new generation students for catering to various needs of society.
- To promote the spirit of entrepreneurship in the young generation to help and create more career opportunities in the society by incubating a nurturing technology product idea backed by Technology Business Incubation.
- To identify and nurture leadership and innovate skills in students to become future leaders to enrich society.
- To develop collaborations and partnerships with International global and reputed Universities, research establishments, Government and NGO's, industries and businesses. To support both faculties and students for international exposure.

SCHOOL OF ENGINEERING AND TECHNOLOGY

VISION

To emerge as a premier center for engineering excellence and innovation, cultivating globally competent professionals committed to driving sustainable development and transformative technological advancements for the betterment of society.

MISSION

- Deliver excellence in engineering education by integrating theoretical knowledge, practical skills, and innovation to equip students for addressing global challenges.
- Foster an environment that encourages curiosity, innovation, and cross-disciplinary research to tackle evolving technological and societal challenges.
- Engage with industry, academic institutions, and communities to enrich education, foster entrepreneurship, and support holistic professional development.
- Cultivate ethical responsibility, leadership qualities, and a dedication to sustainability and continuous learning in all graduates.
- Advance societal progress through the application of inclusive, sustainable, and efficient engineering solutions.

PROGRAMME EDUCATIONAL OBJECTIVES

PEO1: Graduates will apply their knowledge of robotics and automation, mechanical engineering, mathematics, and science to design, analyze, and solve engineering problems in both the industry and research domains.

- **PEO2:** Graduates will excel as team leaders or members in multidisciplinary teams, taking on diverse roles in engineering projects, management, and operations.
- **PEO3:** Graduates will engage in lifelong learning through advanced studies, professional development, and adapting to emerging technologies and methodologies.
- **PEO4:** Graduates will demonstrate ethical responsibility, respect for diversity, and sustainable practices in their engineering work, contributing to societal welfare.

PEO5: Graduates will exhibit strong communication skills, both verbal and written, essential for working in engineering environments and interacting with peers, clients, and the public.

GRADUATE ATTRIBUTES

The Graduate Attributes of B. Tech (Mechanical Engineering with specialization in Robotics and Automation) are:

GA1: Apply appropriate knowledge in Robotics and Automation, Mechanical Engineering to identify, formulate, analyze, and solve complex engineering problems in order to reach substantive conclusions.

GA2: Self-learn and engage in use of advanced computing tools.

GA3: Develop sustainable computing solutions in broader economic, societal and environmental contexts.

GA4: Think critically, creatively and analytically as a mechanical scientist, whilst being able to work effectively, independently and collaboratively as part of a team in research, technology development and entrepreneurial ventures.

GA5: Apply evolving ethics and privacy laws across various domains and territories.

GA6: Effectively communicate engineering concepts and ideas to peers in written or oral forms.

GA7: Be motivated to engage in independent and life-long learning in the broadest context of evolving technological challenges.

PROGRAMME OUTCOMES

On completion of the **B. Tech (Mechanical Engineering with specialization in Robotics and Automation) Programme**, students should be able to:

- **PO1: Engineering knowledge:** Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
- **PO2: Problem analysis:** Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3: Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- **PO4: Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5: Modern tool usage:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- **PO6: The engineer and society:** Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7: Environment and sustainability:** Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8: Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9: Individual and team work:** Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
- **PO10: Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11: Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12: Life-long learning:** Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES

- **PSO1**: Graduates will be able to design, analyze, and develop mechanical systems and robotic solutions across domains such as manufacturing, automation, thermal systems, and industrial applications, by effectively applying engineering principles, technological tools, and interdisciplinary knowledge.
- **PSO2:** Graduates will demonstrate the ability to integrate concepts from control system and automation, thermodynamics, fluid mechanics, materials science, and computer programming to solve complex, real-world engineering problems, fostering innovation through automation and intelligent systems.
- **PSO3:** Graduates will be proficient in the use of modern software, simulation tools, and communication techniques, and will engage in lifelong learning, research, and continuous improvement, enabling them to adapt to evolving technologies and communicate technical ideas effectively across various platforms and stakeholders.

Summary of Credits

Semester	I	II	III	IV	V	VI	VII	VIII	Total
Credits	23	21	24	24	23	22	13	14	164
Contact Hrs./Week	27	24	29	28	28	23	9	6	174

SEMESTER WISE CREDIT STRUCTURE

Sl.	Category of Courses	1 st	Year	2nd Ye	ar	3rd	Year	4 th Ye	ear	Total
No.		Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Sem VII	Sem VIII	
1.	Departmental Core	5	3	16	14	14	7			59
2.	Discipline Specific Electives (DSE)				6	6	6	6	6	30
3.	Open Electives					3	3	3		9
4.	Applied Sciences	8	8	4						20
5.	Seminar/ Summer Internships/ Independent Study and Seminar						3			3
6.	Project							4	8	12
7.	Skill Enhancement Course	8	8	4	4					24
8.	Ability Enhancement Courses (AECC)	3					3			6
9.	Value-Added Course		2							2
	Total	23	21	24	24	23	22	13	14	164

School of Engineering and Technology

B. Tech (Mechanical Engineering with Specialization of Robotics and Automation)

Semester - I

(Total Credits: 23)

SI.No	Course Code	Course Title	L	Т	P	Contact Hrs / Wk	Credits
1.	25BTME111	Applied Sciences Mathematics – I	3	1	0	4	4
2.	25BTME112	Applied Sciences Physics – I	3	1	0	4	4
3.	25AEEN911	Ability Enhancement Compulsory Course (AECC) Effective Communication	3	О	О	3	3
4.	25BTME113	Skill Enhancement Course Fundamentals of Computing	3	0	0	3	3
5.	25BTME114	Skill Enhancement Course Introduction to Programming	3	0	0	3	3
6.	25BTME115	Core Course Engineering Drawing	2	О	2	4	3
7.	25BTME211	Skill Enhancement Course Fundamentals of Computing Lab	0	0	2	2	1
8.	25BTME212	Skill Enhancement Course Introduction to Programming Lab	0	0	2	2	1
9.	25BTME213	Core Course Basic Workshop Practical	0	0	2	2	1
		Total	17	2	8	27	23

Semester – II

(Total Credits: 21)

SI.No	Course Code	Course Title	L	Т	P	Contact Hrs / Wk	Credits
1.	25BTME121	Applied Science Mathematics – II	3	1	0	4	4
2.	25BTME122	Applied Science Physics II	3	0	0	3	3
3.	25EVST921	Value Added Course Environmental Science	2	0	0	2	2
4.	10 5 6 1 1/14 100	Core Course Engineering Mechanics	3	0	0	3	3
5	25BTME124	Skill Enhancement Course Fundamentals of Electrical & Electronics Engineering	3	0	0	3	3
6.	25BTME125	Skill Enhancement Course Python Programming	3	0	0	3	3
7.	25BTME222	Applied Science Physics Laboratory	0	0	2	2	1
8.	25BTME223	Skill Enhancement Course Basic Electrical and Electronics Engineering Laboratory	O	0	2	2	1
9.	25BTME224	Skill Enhancement Course Python Programming Lab	0	0	2	2	1
		TOTAL	17	1	6	24	21

Semester – III

(Total Credits: 24)

SI.No	Course Code	Course Title	L	Т	P	Contact Hrs / Wk	Credits
1.	25BTME131	Applied Science Mathematics – III	3	1	0	4	4
2.	25BTME132	Skill Enhancement Course Data Structures and Algorithms	3	0	0	3	3
3.	25BTME133	Core Course Materials Engineering and Metallurgy	3	0	О	3	3
4.	25BTME134	Core Course Thermodynamics	3	0	0	3	3
5.	25BTME135	Core Course Strength of Materials	3	0	0	3	3
6.	25BTME136	Core Course Fluid Mechanics and Machinery	3	0	0	3	3
7.	25BTME231	Skill Enhancement Course Data Structure and Algorithm Laboratory	0	0	2	2	1
8.	25BTME232	Core Course Strength of Materials Laboratory	0	0	4	4	2
9.	25BTME233	Core Course Fluid Mechanics and Machinery Laboratory	0	0	4	4	2
		Total	18	1	10	29	24

Semester – IV

(Total Credits: 24)

SI.No	Course Code	Course Title	L	Т	P	Contact Hrs / Wk	Credits
1.	25BTME141	Core Course Theory of Machines	3	1	0	4	4
2.	25BTME142	Skill Enhancement Course Fundamentals of Machine Learning	3	0	0	3	3
3.	25BTME143	Core Course Manufacturing Technology	3	0	0	3	3
4.	25BTME144	Core Course Robotics and Automation	3	1	0	4	4
5.	25BTME341 25BTME342 25BTME343	Discipline Specific Elective (DSE) I Robot Mechanics and Control Tool Design Design of Machine Elements	3	0	0	3	3
6.	25BTME344 25BTME345 25BTME346	Discipline Specific Elective (DSE) II Advanced Materials and Composites Nanomaterials and Nanotechnology Pollution and Control	3	O	O	3	3
7.	25BTME241	Skill Enhancement Course Fundamentals of Machine Learning Laboratory	0	0	2	2	1
8.	25BTME242	Core Course Manufacturing Technology Laboratory	0	0	4	4	2
9.	25BTME243	Core Course Robotics Engineering Software Laboratory	0	0	2	2	1
		Total	18	02	08	28	24

Semester – V

(Total Credits: 23)

SI.No	Course Code	Course Title	L	Т	P	Contact Hrs / Wk	Credits
1.	25BTME151	Core Course Thermal Engineering	3	О	0	3	3
2.	25BTME152	Core Course Computer Integrated Manufacturing	3	О	0	3	3
3.	25BTME153	Core Course Metrology and Measurements	3	О	0	3	3
4.	25BTME351 25BTME352 25BTME353	Discipline Specific Elective (DSE) III Advanced Automation Systems Refrigeration and Air Conditioning Vibration Engineering	3	O	0	3	3
5.	25BTME354 25BTME355 25BTME356	Discipline Specific Elective (DSE) IV Finite Element Analysis Renewable Energy Sources Smart Materials	3	0	0	3	3
6.	25BTME051 25BTME052 25BTME053	Open Elective I Electric and Hybrid Vehicles Digital and Smart Manufacturing Digital Image Processing	3	О	О	3	3
7.	25BTME251	Core Course Thermal Engineering Laboratory	О	О	4	4	2
8.	25BTME252	Core Course Computer Integrated Manufacturing Laboratory	0	0	2	2	1
9.	25BTME253	Core Course Metrology and Measurements Laboratory	0	О	4	4	2
		Total	18	0	10	28	23

Semester – VI

(Total Credits: 22)

SI.No	Course Code	Course Title	L	T	P	Contact Hrs / Wk	Credits
1.	25BTME161	Core Course Heat and Mass transfer	3	0	О	3	3
2.		Ability Enhancement Courses Sensors and Control Systems	3	0	0	3	3
3.	25BTME361 25BTME362	Discipline Specific Elective V Artificial Intelligence in Robotics & Automation Micro and Nano manufacturing Gas Dynamics	3	0	0	3	3
4.	25BTME365	Discipline Specific Elective VI Mechatronics in Robotics and Automation Additive Manufacturing Principles of Management and Engineering Economics	3	0	0	3	3
5.	25BTME062	Open Elective II Energy Conservation and Management Reliability Engineering Project Management	3	0	0	3	3
6.	25BTME261	Core Course Heat and Mass transfer Laboratory	0	0	4	4	2
7.	25BTME262	Core Course Automation and Control Systems Laboratory	0	0	4	4	2
8.		Internships/ Field Visits Industrial/ Research Internship	0	0	0	0	3
		Total	15	0	08	23	22

Semester – VII

(Total Credits: 13)

SI.No	Course Code	Course Title	L	Т	P	Contact Hrs / Wk	Credits
1.	25BTME371 25BTME372 25BTME373	Discipline Specific Elective VII Soft Robotics Material Characterization Techniques Engineering Failure Analysis	3	0	O	3	3
2.	25BTME374 25BTME375 25BTME376	Discipline Specific Elective VIII Microsystems Design and Applications Power Plant Engineering Tribology	3	0	0	3	3
3.	25BTME071 25BTME072 25BTME073	Open Elective III Non-Destructive Testing Computational Fluid mechanics Human Computer Interaction	3	0	0	3	3
4.	25BTME571	Project Project- Phase I	О	О	О	0	4
		Total	09	o	О	09	13

Semester – VIII

(Total Credits: 14)

SI.No	Course Code	Course Title	L	Т	P	Contact Hrs / Wk	Credits
1.	25BTME381 25BTME382 25BTME383	Discipline Specific Elective IX Autonomous Robot Vehicles Battery Management Systems (BMS) Non-Destructive testing	3	0	0	3	3
2.	25BTME384 25BTME385 25BTME386	Discipline Specific Elective X Robot Applications and Programming Professional Ethics Operations Research	3	О	О	3	3
3.	25BTME581	Project Project- Phase II	0	О	0	0	8
		Total	6	o	0	6	14